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We apply the periodic orbit expansion to the calculation of transport, thermo- 
dynamic, and chaotic properties of the finite-horizon triangular Lorentz gas. 
We show numerically that the inverse of the normalized Lyapunov number is a 
good estimate of the probability of an individual periodic orbit. We investigate 
the convergence of the periodic orbit expansion and compare it with the con- 
vergence of the cycle expansions obtained from the Ruelle dynamical (-function. 
For this system with severe pruning we find that applying standard convergence 
acceleration schemes to the periodic orbit expansion is superior to the dyna- 
mical (-function approach. The averages obtained from the periodic orbit 
expansion are within 8 % of the values obtained from direct numerical time and 
ensemble averaging. None of the periodic orbit expansions used here is com- 
putationally competitive with the standard simulation approaches for calculat- 
ing averages. However, we believe that these expansion methods are of 
fundamental importance, because they give a direct route to the phase space 
distribution function. 

KEY WORDS: Symbolic dynamics; thermodynamics; Green-Kubo formulas; 
phase space. 

1. INTRODUCTION 

Recent  works ,  such as the d i scovery  tha t  the con juga t e  pa i r ing  rule for the 

L y a p u n o v  exponen t s  of  n o n e q u i l i b r i u m  systems I1~ gi~,es a di rect  connec t i on  

be tween  t r anspor t  coefficients  and  n o n l i n e a r  stabil i ty,  and  an equ iva len t  

result  ob t a ined  by G a s p a r d  and  Rice, ~21 have  p rov ided  new reasons  for 
s tudy ing  m o d e l  systems such as the L o r e n t z  gas. ~5-8~ T h e  Lo ren t z  gas can  

be cons ide red  as a classical  ,model  for e lec t rons  m o v i n g  independen t ly  
t h rough  a crystal ,  and  can  be easily ex tended  to s imula te  the m o t i o n  under  
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an applied electric field. In nonequilibrium statistical mechanics, self-diffu- 
sion can be studied as the limiting case of mutual diffusion where the two 
species only differ in a color label, tg~ and the smallest nontrivial system of 
this type contains two particles (one of each color)/4~ This two-particle 
system in periodic boundary conditions is exactly equivalent to the Lorentz 
gas when the color field is zero, and its extension to nonzero fields leads to 
a more complicated dynamics for the wandering particle between collisions. 
The Lorentz gas is clearly one of the simplest deterministic systems ~3"4) 
which exhibits diffusion in the absence of a field and a steady current away 
from equilibrium, and has therefore been recently reexamined c6~ in an 
attempt to determine which microscopic dynamics yield classical transport. 

There is an exact equivalence between the Hamiltonian for the equi- 
librium molecular dynamics simulation of two hard disks in two dimen- 
sions in periodic boundary conditions and the Hamiltonian for the 
modified Lorentz gas (the original Lorentz gas has random rather than 
regularly arranged scatterers). The equations of motion for the two hard 
disk system are 

Pi 
i'i = -- and [I i = Fi ( 1 ) 

/97 

where i =  1, 2. The coordinate origin can be shifted to be the position of 
particle 1 by moving to relative coordinates r = r z - r  ~ and P = P 2 - P ~ .  
Defining the force in relative coordinates to be F - - - F 2 - F ~ = 2 F  2, we 
obtain the same equations of motion as before, with the subscripts 
removed. As the force is only nonzero when particles 1 and 2 are in contact 
(that is, the centers are separated by the particle diameter tr), the size of 
particle 1 and all its periodic images can be expanded so their new diameter 
is 2a, and the diameter of particle 2 reduced to zero. It is easy to see that 
the motion of particle 2 is now that of a point particle wandering through 
a regular lattice of scatterers (particle 1 and its periodic images). The 
periodicity of the lattice is the same as that of the periodic boundary condi- 
tions. The constraint of either constant energy or constant kinetic energy 
for a two-particle system implies that the speed of the wandering particle 
(particle 2) must be constant. For the usual cubic periodic boundary condi- 
tions the wandering point particle always has an infinite horizon (that is, 
for special initial conditions it can pass through the whole lattice without 
a collision). To avoid the subsequent difficulties with the definition of the 
diffusion coefficient we adopt a triangular lattice, and we choose the 
density sufficiently large so that the horizon is finite. As the speed of the 
wandering particle is constant, the momentum has only one degree of 
freedom, its direction, so we can write p = p(cos 0, sin 0), where 0 is the 
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angle between the x axis and the momentum vector. The equations of 
mot ion for the wandering particle between collisions are 

.~ = P-- cos 0, p = P s i n  0, 6 = 0  (2) 
m m 

Integrated, these equations give straight-line trajectories. It is sometimes 
more convenient to represent the position in polar coordinates, so that 
(x, y)  = r(cos ~, sin ~) (Fig. 1 ). 

Machta  and Zwanzig t3~ have characterized the thermodynamic state 
point of the Lorentz gas in terms of the disk spacing w, so if d is the dis- 
tance between the centers, then w = d - 2 t r .  In what follows we take a = 1, 
and it is straightforward to show that the density of the infinitely periodic 
two-particle system is related to the spacing in the Lorentz gas by the 
relation 

For  a finite horizon we require that 0 4  w~< 4/, , , / '3- 2. See Section 4 for 
more details. 

This paper is organized as follows. In Section 2 we present some new 
bounds on the value of the diffusion coefficient and the pressure for the 
periodic Lorentz  gas, obtained from direct numerical simulations for a 
range of spacings w. In Section 3 we discuss the recently developed periodic 
orbit expansion method and its links with the calculation of thermo- 
dynamic quantities. In particular, we test the claim that these methods 
produce better results than the standard simulation methods. Sections 4 
and 5 are devoted to the development of symbolic dynamics needed for 
periodic orbit studies of the Lorentz gas. Section 6 describes the numerical 
schemes used in our study. In Section 7 we present the numerical results 

d 

Fig. 1. The geometry of the Lorentz gas. For the scatterer at collision, the polar angle 
gives the position of the moving particle, while 0 gives the angle between its momentum vector 
and the x axis. The state point can be represented by the density or by specifying the spacing 
between scatterers w. 
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obtained from the two different periodic orbit expansion methods, which 
we hereafter refer to as the periodic orbit expansion 17) and the cycle expan- 
sion, ~8) and compare them with our direct simulation method estimates in 
Section 2. The conclusions of our study are summarized in Section 8. 

2. D IFFUSION COEFFICIENT A N D  PRESSURE 

There are a variety of direct simulation methods used to compute the 
diffusion coefficient D. t9) In this section we give the results of new numeri- 
cal simulations of an ensemble of Lorentz gas systems uniformly dis- 
tributed in the part of phase space not occupied by the scatterer of the 
elementary cell of the triangular array described in Section I. Here, by 
elementary cell (EC) we mean a hexagon whose replicas tile the whole two- 
dimensional plane. This hexagon is formed by the perpendicular bisectors 
of the lines joining the center of the central scatterer to the centers of the 
six nearest neighbor scatterers. Each initial condition in the EC is 
associated with a set of different momenta uniformly distributed to fill up 
the surface of the unit ball in momentum space. In our system there are no 
external forces, so the point particle travels with constant velocity between 
two collisions, and the mass and speed are taken to be one. This model is 
similar to the Lorentz gas of the previous section, the only difference being 
that instead of considering a single particle, we follow an ensemble of 
Lorentz gas systems and calculate averages over the ensemble as a function 
of time. In particular, we compare the values of D as obtained from the use 
of the Einstein relation and the Green-Kubo  formula. As expected, both 
methods provide us with basically the same values of D, although the 
numerical efficiencies of the two methods are different. Note: every ensemble 
which can be modeled on a computer necessarily contains a finite number 
of elements. Thus, when we speak of ensemble averages we actually mean 
approximations of phase space integrals by means of finite sums. 

To see how the Einstein and Green-Kubo formulas produce the same 
results we may argue as follows. Let us assume that the ensemble average 
of the mean square displacement (z/r(t) 2) grows linearly with t at large 
time. Then, the Einstein relation for D in three dimensions can be written 
as  

1 (zlr(t) 2) lim 1 d 
D=,~lim 6 t , - ~  ~ (Ar(t)  2) (3) 

where ( ) indicate an ensemble average, and the displacement of a single 
member of the ensemble is defined by 

f2 A r ( t ) = r ( t ) - r ( O ) =  dr' v(t') 
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So from Eq. (3), the diffusion coefficient can be written as 

D=,~.lim �89  ds�89 (4) 

which is similar to a Green-Kubo relation. In order to obtain precisely the 
Green-Kubo expression for D we have to use the properties of the 
equilibrium distribution function. In particular we require that, for any two 
phase variables, A' and B say, the equilibrium-time correlation function 
only depends upon the time difference between the two phase variables, i.e., 

( A(t) B(O) ) = ( A(O) B ( - t )  ) (5) 

This can be proved by moving the time evolution propagator from phase 
variable A(t)B(O) to the distribution function, and it can be viewed as a 
consequence of the equivalence of Schr6dinger and Heisenberg representa- 
tions for time evolution under the classical Liouville operatorJ 9~ After a 
simple change in variables, the diffusion coefficient becomes 

D= iim dr' �89 v(t ' ) )  = dt' �89 v(t ' ) )  (6) 

which is the Green-Kubo relation for the diffusion coefficient. An identical 
argument applies to the two-dimensional system, where the factor 1/6 in 
Eq. (3) is replaced by 1/4. This proves the equivalence of the mean square 
displacement formula and the Green-Kubo relation. However, in a 
molecular dynamics calculation we always have a finite (rather than 
infinite) time and a finite number of ensemble members in the average. 

The problem, now, is to find the best estimate of D by extrapolating 
to the limit of large times and large ensemble sizes. From the numerical 
point of view we can either fix the time interval T and extrapolate the 
ensemble size, or fix the number of ensemble members and extrapolate to 
infinite time T. We find that the mean square displacement converges 
quickly with increasing ensemble size, but slowly with increasing T. By 
contrast, the Green-Kubo integral converges quickly with increasing T, 
but slowly with increasing ensemble size. The computational technique that 
we use to get the best estimate of D in the limit (ensemble size, T) --* ~ is 
to choose a sufficiently large value of the quickly convergent variable and 
then extrapolate the diffusion coefficient as a function of the inverse of the 
slow variable. In Fig. 2 we present the results obtained for w= 0.3. The 
Green-Kubo diffusion coefficient converges like a random variable with 
increasing ensemble size, while the mean square displacement is a 
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Fig. 2. (a) The ex t rapola t ion  of the diffusion coefficient from the G r e e n - K u b o  formula DGK 
versus the inverse of the number  of ensemble members.  The upper  l imit  of the integral  is fixed 
at T =  17.9. DGK converges like a r andom variable  to 0.24935. ( b ) T h e  ex t rapola t ion  of the 
diffusion coefficient from the mean-square  displacement  DMS o versus the inverse of T. The 
number  of ensemble members  is fixed at 152,520. Here the convergence is a lmost  exactly l inear  
to a value of 0.24921. The consistency of the l imi t ing values is most  impressive. 

monotonically increasing linear function of T. There is an impressive con- 
sistency between the two methods of calculating the diffusion coefficient. 

Our simulations show that the assumption that (At(t)  2) grows 
linearly with time at large times is very well satisfied in the Lorentz gas for 
all the different values of w that we have considered. However, it is worth 
noting that such behavior is not observed when a single trajectory is 
simulated. Indeed, for closed loops (composed of many traversals of a 
single closed periodic orbit) At(t) 2 is strictly bounded. Also, there are 
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trajectories which look periodic in the EC, but not in the full phase space, 
whose square displacement grows as t 2 in the limit of large times (the exist- 
ence of orbits of this kind will be clarified in Section 4). Moreover, we 
always observe that a single generic chaotic trajectory has a square dis- 
placement which does not appear to approach linear growth, and that it is 
essential to consider ensembles to obtain linear growth in (At(t)  2) (this 
occurs despite the proved ergodicity of this system). 

In Table I we compare our extrapolated results with those previously 
published in the literature. The column labeled Din gives the approximate 
theoretical diffusion coefficient calculated by Machta and Zwanzig, while 
DMZ is the Green-Kubo calculation by the same authors. (3) Desc is the dif- 
fusion coefficient calculated by Gaspard and Baras using their escape rate 
method. (5) The column labeled DBEC gives the results obtained by Baranyi 
et al., (a~ while the column labeled D* gives the results obtained here from 
a combination of extrapolations of Green-Kubo and Einstein formulas. In 
the table the number in parentheses is the uncertainty in the last digit of 
the quoted result. It is interesting to note that the results in the column 
labeled DBEC, which were obtained in a rather original way--that  of 
extrapolating from soft-sphere potentials to hard-disk potential--are in 
very good agreement with our present results. 

The instantaneous expression for the pressure tensor P(t) can be 
written as a function of the instantaneous values of position and momentum 
to obtain 

N N 
P V =  ~ PiPi 1 ~ r~jF~ (7) 

i = 1 ?71 2 t I " = 

where V is the volume of the system, F~i is zero except at a collision, and 
Pi is constant between two collisions. The average value of the pressure 
can be obtained to high accuracy by calculation of the time average of 
Eq. (7). ~ Due to the ergodicity of the system, the ensemble average and 
time average are equal. We calculated the average pressure for 31 values of 

Table I. The Diffusion Coefficient 

W Dth DMZ D~c  DBEC D *  

0.10 0.104 0 .10(1)  0 .096(7)  0 .098(5)  0 .0995(3)  

0.15 0.128 0 .14(1)  0 .134(4)  - -  0 .1350(5)  

0.20 - -  - -  - -  0 .167(10)  0 .170(1)  

0.236 0.158 - -  - -  - -  0 .197(1)  

0.30 0.175 0 . 2 5 ( I )  0 .25(1)  0.24718) 0 .2492(3)  

822/75/3-4-14 
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Fig. 3. The equation of state for the Lorentz gas. For the purpose of interpolating the equa- 
tion of state it has been fitted to a ninth-order polynomial whose coefficients M0 to M9 are 
listed. 

w in the range [0, 0.3], and we found that  s imulat ion runs of 10 6 collisions 
were sufficient to obta in  P with a precision of five or  more  significant 
figures. Our  results are presented in Fig. 3, a long with a po lynomia l  fit 
whose accuracy is est imated by the factor R (an exact fit is R = 1). In this 
equil ibr ium system the pressure tensor is d iagonal  and the kinetic par t  is 
trivially related to the total  kinetic energy. As a result we calculate only the 
nontr ivial  potent ial  cont r ibut ion  to the trace of the pressure tensor  divided 
by the dimension of the system p~. The volume of the system for a given 
w is computed  from the expression V =  N i p  = 2/p, where the density p can 
be obta ined  from the spacing using the expression given in Section 1. 

3. P E R I O D I C  O R B I T  E X P A N S I O N  

It has been noted in a large number  of works from both the mathe-  
matical  and the physical  l i terature that  the proper t ies  of many chaotic  
systems can be studied in terms of unstable  per iodic  orbi ts  (UPOs) ,  and 
that  the relevant a t t rac tors  can be hierarchically approx imated  through 
sets of progressively longer and longer unstable periodic orbits.  (7'6' j~ tT) In 
this approach,  the U P O s  are grouped into sets of  prime ones, P,, say, with 
the same number  n of collisions, where prime means that  each member  of 
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P,, undergoes exactly n collisions in a time equal to its own period. One 
attaches a stability weight to each particular UPO which is inversely 
proportional to the product of its expanding Lyapunov numbers /~i {14) 
(The reason why such weights are related to the stability of UPOs is that 
a Lyapunov number can be viewed as a measure of the instability of the 
orbit with which it is associated, as it takes on larger values as the 
instability of the orbit increases.) In the two-dimensional Lorentz gas there 
is exactly one expanding Lyapunov number (or exactly one positive 
Lyapunov exponent). One of the principal aims of this study is to test 
numerically the connection between this stability weight and the statistical 
probability of the UPO. We can use all these facts to compute the averages 
of thermodynamic quantities. What needs to be done then is to consider 
the dynamics for UPOs of finite n, and then extrapolate the results to the 
n ---, oo limit. If B is a function of phase only, then the average value of B 
over the chaotic set can be written as 

.4 - '  I; '  B(s) as ~ ' i ~  Pn i 
( B ) =  ,,lim- : ~  ~. i , t ,n . r iA~ t .  (8) 

where z~ is the period for the ith UPO, and the integral is over the ith 
UPO. Vance 17~ has used this periodic orbit expansion (POE) for the 
Lorentz gas in an external field to obtain the diffusion coefficient as 
the ratio of the mass current to the external field. Vance also derived 
the equilibrium periodic orbit expansion for the diffusion coefficient in the 
absence of a field, which takes the form 

1 ~ '~ ie t ' , ( zJ t i )2A[  I 
D =  lira - -  (9) 

. . . . .  2d  ~..ieP "riz~Z 1 

where (Ar~) 2 is the square of the displacement of the wandering particle 
along one transit of the ith UPO and d is the dimensionality of the Lorentz 
gas (here d =  2). Formulas related to Eq. (8) have been derived in different 
ways j7.8.12) 

To illustrate the ideas involved in the periodic orbit expansion, we 
present a heuristic derivation of the formulas which are used to compute 
averages of phase and dynamic variables in such a context. If we consider 
the probability measure supported over the set of periodic orbits with n 
collisions, p,, say, then this assigns the same mass  (or probability) to each 
point on the same cycle, and it is reasonable to assume that such a quan- 
tity is proportional to the stability of the orbit. The argument is that the 
more unstable the orbit, the less likely it is to be approached in phase space 
compared with those orbits which are less unstable (dynamically, a phase 
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space trajectory visits regions of higher natural measure more often). Thus, 
we may adopt a measure which is proportional to the inverse of the Lyapunov 
number of the UPO when evaluated over a segment of that UPO, and that 
vanishes outside the set of points covered by the UPO. Note that we can 
parametrize every point on a given orbit either by its distance in curvilinear 
coordinates from a fixed origin on the orbit or by the time that it takes to 
travel along the orbit from that origin (since the speed of our particles is 
equal to one). In our work, for convenience, we use the time variable. 
Then, the measure of a segment of the j th  UPO with n collisions is 
dpjEe,(t)= CAr  I dt, where A,: -~ is the inverse Lyapunov number, and C is 
a normalization constant independent of i. The contribution to the average 
of an arbitrary phase variable B from that periodic orbit can be written as 

( B ) j ~ e  = f B ( s ) d p j , e , ( t ) = C A / l I ~ '  B(s(t))dt (10) 

In turn, the measure p,, is given by the sum of pieces like pj~ e, for all the 
j in P,,, and the average of B over all prime cycles with n collisions takes 
the form 

ZjoP, A71 I'd B(t) dt 
( B ) , , =  y.j~p,,ria~_ J (11) 

where the normalization constant C is easily found by taking B =  1 (prob- 
ability conservation). Now, recalling that the measure on the chaotic 
attractor is approximated by periodic cycles of larger and larger period, we 
see that it is enough to take the limit n---, oe to get Eq. (8). 

It appears that Eq. (8) represents both a time and space average of the 
variable B, but this is simply one interpretation of the measure. If, after 
constructing the measure, we ignore the periodic points or UPOs that gave 
rise to it, then the measure can be viewed as an approximation to the 
natural measure and can be used as such in pure phase space averages. If, 
however, we ask for the probability of observing a particular cycle or 
UPO, i say, among those with the same number of collisions, then that is 
given by 

TiA~ -1 
Pi = Zi~ e, ~ jA f  ~ (12) 

where the sum is intended over prime UPOs. 
To calculate the potential part of the pressure p~ for the system, we 

rewrite Eq. (7) as a sum over collisions, so that 

( p ~ ) V = -  lim 1 ~ Pl'-'rl2 = -  lim 1 ~ p . r  (13) 
t ~ m l c o l l i s i o n s  t ~ .2 t c o l l i s i o n s  
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and its periodic orbit expansion can be written as 

~"ie Pn Y~-collisions lp .  rA 7 l 
(p~V)  = lim (14) 

n ~ ~ ~ i E  Pn "ciA~ I 

where p is the relative momentum immediately before collision and a is the 
diameter of a hard disk (or the radius of the scatterer). 

To explore the utility of the periodic orbit expansions, we calculate 
three different properties: the potential contribution to the hydrostatic 
pressure, a standard thermodynamic property which can be calculated very 
accurately as a time average; the diffusion coefficient; and the average 
Lyapunov exponent. The average Lyapunov exponent (25  is the largest 
exponent for the whole system, rather than the value for a particular UPO. 
That is, 

~ i ~ p  )~i'ciA] -I 

(2)=,,lim_~. ~. i~e  r i A f  ~ (15) 

4. S Y M B O L I C  D Y N A M I C S  FOR THE LORENTZ GAS 

In the elementary cell (EC) we can generate a symbol sequence by 
assigning a symbol to each section of trajectory between collisions. The 
symbol that is assigned depends upon the vector separation between the 
centers of the scatterers involved in the initial and final collisions for that 
segment of trajectory. For a UPO the symbol sequence uniquely defines the 
orbit, so that the terms in the periodic orbit expansion can be enumerated 
by determining all possible symbol sequences composed of a fixed number 
of symbols. One must then prune that list of symbol sequences by removing 
those orbits that pass through scatterers and are hence not physically 
realizable. We will use symbolic dynamics to distinguish different UPOs in 
our simulations and also to determine the degeneracy of a particular UPO. 
By degeneracy we mean the number of different physical orbits which are 
related by discrete symmetries and make the same contribution to the 
averages. This is directly related to the degree of symmetry of the orbit 
within the triangular lattice. For a fuller discussion of the exploitation of 
symmetry see ref. 20. 

Figure 4 shows the lattice of scatterers with the 12 possible flights 
labeled. Due to the finite horizon, these are the only flights that are 
possible. In the figure even numbers correspond to short flights between 
nearest neighbors and odd numbers to the long flights between second 
nearest neighbors. We now give a complete description of the admissible 
UPOs with less than seven collisions for a spacing of w = 0.3. 
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Fig. 4. 

) O  

) O  
The symbols associated with each of.the possible flights between scatterers. 

There are four types of length-two U P O s  (i.e., U P O s  with two colli- 
sions): the short  flight (S) between nearest neighbor scatterers; the long 
flight (L) between second nearest neighbors; the tick-shaped orbit  (T), 
consisting of a long flight and a short  flight; and the V-shaped orbit  (V) of 
two long flights (see Fig, 5). It is easy to see that the S U P O  can have the 
following symbol  sequences: 

S (0 6), (2 8), (4 10), (6 0), (8 2), (10 4) (16) 

Of  these six orbits, only three are distinct. The orbits 0 -6  and 64) are the 
same orbit  with different beginning points. We can also think of the orbits 
643 and 0-6 being related by plus or minus the lattice vector in the x direc- 

Fig. 5. 

O (  ) O  

Examples of length-2 UPOs. (0 6) is the short flight orbit; (3 9) is the long flight 
orbit; (4 II) is the tick orbit; and (1 5) is the V orbit. 
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tion. The case of the long flight orbit L is similar. The possible sequences 
are 

L (17), (39), (511), (71), (93), ( I15)  (17) 

Again only three of these symbol sequences are distinct. The tick-shaped 
UPO consists of a short flight followed by a long flight and in this case 
there are 12 distinct symbol squences: 

T (27), (49), (611), (81), (103), (05) 
(18) 

(0 7), (2 9), (4 11), (6 1), (8 3), (10 5) 

We can think of the first two orbits (S and L) as being symmetric about 
their center (or under reflection), whereas T is asymmetric. The last orbit 
V is again symmetric about its center and there are six possibilities: 

V (7 11), (9 1), (11 3), (1 5), (3 7), (5 9) (19) 

All of these six possibilities are distinct. 
The total number of length-two orbits is 24, which is made up of three 

S, twelve T, three L, and six V orbits. One way of thinking about these 
orbits is in terms of short and long flights. Short flights are between nearest 
neighbors and long flights are between second nearest neighbors. The 
UPOs S, L, and V are made of two similar orbits, either both short or both 
long flights; whereas the T orbit consists of one short and one long flight. 
Clearly, it is possible for UPOs composed of two similar flights to have 
more symmetry than UPOs composed of different flights. This symmetry 
determines what we call the degeneracy of the orbit-- that  is, the number 
of different symbol string representations for the orbit. For the T orbit we 
have seen that there are 12 different symbol strings which all have the same 
contribution to an average property. These 12 different strings can be 
obtained from a single symbol string by rotating that orbit around the 
center of the EC, or by reflecting it about the horizontal direction, or by 
reversing the direction of the motion. To reduce the number of orbits we 
need to consider, we define the fundamental representation (or fundamental 
symbol string) for a group of symmetry-related orbits and its degeneracy. 
From the symbolic representation for an orbit we obtain an integer by 
interpreting the symbol string as a base-12 number. That is, to the symbol 
s ...... sl we assign an integer/,, deined by 

I,,= ~ 12 ~-lsi 
i = 1  

The fundamental representation of a group of symmetry-related orbits is 
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Table II. Periodic Orbits of  Length 2 

Orbit Degeneracy 2r Symbol 

S 3 1.51286399 (0 6) 
T 12 3.15831208 (0 5) 
L 3 3.51394510 (I 7) 
V 6 4.65944481 (I 5) 

that symbol sequence that has the smallest base-12 integer /,,, and the 
degeneracy is the number of different symmetry-related orbits. For example, 
for the T orbit the fundamental symbol string is (05), which has 
degeneracy 12. Given the fundamental symbol sequence, all the symbol 
sequences for the group can be obtained by applying one or more of the 
symmetry operations: rotation, reflection, and time reversal. Each of these 
symmetry operations has a simple meaning when we consider its action 
upon a symbol string. For example, the six rotations can be obtained by 
adding either 0, or 2, or 4, or 6, or 8, or 10 modulo 12, to each symbol in 
the symbol sequence. The reflection in the x axis is obtained by taking the 
negative mod 12 of each symbol. Time reversal consists of reversing the 
order of the symbol string and adding 6 mod 12 to each symbol. Table II 
is the table of orbits with two collisions (length 2) at w = 0.3, giving both 
the fundamental symbol sequence and the degeneracy. The Lyapunov 
numbers are given by exp(2z), where 2 is the Lyapunov exponent and r the 
period. 

We note that all the orbits from the groups S, L, T, and V are periodic 
in the EC. But the S and L orbits actually are periodic in the whole phase 
space, so that Ar( t )  2 is bounded for all t, while the T and V orbits are not 
closed and Ar(t) 2~  t 2 at large t. 

All length-three UPOs can be considered as variations upon length- 
two UPOs. The first is the small triangle T made up of three short flights 
(which we can think of as adding an extra short flight to S). The symbol 
sequences for this orbit are (2 6 10), (2 10 6), (0 4 8), (0 8 4). The variation 

Table III. Periodic Orbits of  Length 3 

Orbit Degeneracy 2r 

S' 4 3.27128792 
L' 12 6.23520184 
T' 24 6.31880379 
V' 24 8.30080318 

Symbol 

(048) 
(027) 
(026) 
(025) 
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of the long-flight UPO L changes one long flight into a glancing collision 
and hence two short flights. For example, (1 7) becomes (0 2 7). The varia- 
tion on the tick orbit T replaces the long flight with a glancing collision of 
two short flights, so that (0 5) becomes (04 6), which in turn becomes 
(0 2 6) under time reversal and rotation. This orbit consists of three short 
flights but is not closed. The variation on the V orbit replaces one of the 
long flights with a glancing collision. For example, (1 5) becomes (0 2 5). 
The resulting orbit is open and consists of two short and one long flight. 
Table III is the table for the orbits with three collisions. 

5. THE RUELLE ~ -FUNCTION F O R M A L I S M  

A number of recent works (see, e.g., refs. 5, 8, l l ,  12, and 17 and 
references therein) have discussed the Ruelle ~-function formalism 1181 and 
its adaption to compute average quantities of physical interest from many 
kinds of dynamical systems. In this section we outline that development. In 
statistical mechanics it is important to develop a method of calculating the 
averages of arbitrary phase variables. To do this we consider the combined 
time and space average of the phase variable B ~12'8~ and exploit the solid 
framework of probability theory, introducing generating functions whose 
moments provide the averages we need. We outline the argument below for 
discrete-time systems, in this case a mapping of the unit interval. To begin 
we define the function Q(~) where 

Q(B)= lim l n ( e x p [ ~ B " ] ) =  iim -1 In dxp, ,(x)exp[BB"(.x)]" (20) 
n ~ ~ .  17 n ~ ~ n 

where B"(x) is the sum of the values of B along a length-n orbit beginning 
at the point x. To obtain the usual form for the average we differentiate 
with respect to ~ and then set B = 0; 

= lim - dx p,,(x) B(x , (x ) )  

This is the ensemble average of the discrete-time average of B. We choose 
initial values of x according to their probabilities p,,(x) and then generate 
the discrete-time average beginning at the point x. Consider the formal sum 
over periods of all lengths 

(2(z) = ~ z"(exp[/~B"] ) = z" dx p,,(x) exp[~B"] (21) 

We remark that as n--* oo the sum 8'j=ZT;g B(x,j)---,n(B) (where ( B )  
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is the standard time average of B), so that the generating function behaves 
as  

f2(z)... ~ z"exp(fln<B>)- 
I t =  | 

z exp(fl<B>) 

1 --zexp(fl<B>) 

This implies that the divergence of the generating function I2(z) occurs 
when < B > = - ( 1 / f l ) l n z .  Substituting the limiting form of (B> into 
Eq. (20) for Q([3), we find that 

Q(fl)~ lim l in<exp[nf l<B>]  > = fl< B> 
n~oz n 

and hence (2(z) diverges when - I n  z =  Q(fl). Taking Eq. (21) and sub- 
stituting the stability weights for the periodic orbits gives 

O(z) = ~ :"Z A;' expE/~BT] (22) 
n = I .i 

where we have labeled periodic cycles with the index j. The sum over j 
contains each prime cycle beginning from each of its possible starting 
points and multiple traversals of all prime cycles, so we rewrite this as a 
sum over prime cycles 

, . Q ( z ) =  p ~ n p  ~ ,  (znPelIBp~ r 

,.=, \ IApl } 

,,p #Bp 
npz e IA; ' l  

= ~ 1 -npz",eBS, IA;II p 
(23) 

x;.,,,-l B(xi) is the sum of the values of B around the prime where Bp = ~i=o 
UPO. If we define 

-nPelJBp 
tp-- lap[ (24) 

then we have that 

np lp 

Defining the Ruelle ~ function as 

(25) 

1 
~(fl. z ) = H  (1 - t p ) =  H (1 -z",e aBp lAp'1) 

p P 
(26) 
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then taking the logarithm and differentiating with respect to z, we can 
show that the generating function 12 is related to the Ruelle (-function by 

12(fl, z) = - z  dzz In (27) 

In Eq. (21) we have shown that finding the average of B corresponds to 
finding the value of z for which O(z) diverges. This occurs when 

- I n  z = f l ( B )  =Q(fl)  (28) 

which suggests a change in the definition of tp replacing - I n  z by a new 
variable s, so that 

eBB,- ,,,.~ 
t p -  Ih,l (29) 

Then Q(fl) can be found from the solution of 

1 
~(fl, Q(fl)) ]--I (1 - t p ) = 0  (30) 

p 

As an example of the implementation of the (-function formalism to 
generate what we will refer to as cycle expansions, we consider the calcula- 
tion of the average Lyapunov exponent and diffusion coefficient. We have 

( 2 )  = lim 1 (In A'(x)) 
t ~ t~,2_ t 

so the phase variable to consider is In A = 2~, and the weight function for 
the Ruelle dynamical (-function is 

et~ I n  A p  - Srp 

tp [Apl 

The ~-function-based cycle expansion for the average Lyapunov exponent 
can be written as ~8) 

~PI"'Pk (__l)k (In Ap, + ... +In  Apk)/lAp,...Apkl 
( 2 5 =  Ep, . ,k (_1)~ (zp,+ ... +T,A/IA,, '"Ap~I (31) 

where Pl "''Pk is the symbol string for the prime UPO. An arbitrary 
symbol string may be decomposable into smaller substrings where all the 
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substrings are themselves prime UPOs. In that case k is the number of 
substrings. The cycle expansion formula for the diffusion coefficient is ~8~ 

1 ~m-..pk (-- 1) k (n~, + ... + npk)/IAp~... Apk I 
D = 2 d  Zp,...pk (--1)  k (rp,+ ... +zr~)/IAp,--.Apkl (32) 

where el= 2 for the two-dimensional Lorentz gas and I1pi is the displace- 
ment obtained from the UPO with symbol string Pi- Equations (31) and 
(32) are the cycle expansion formulas for ( 2 )  and D. 

From Eq. (21), putting fl=O, it can be shown that I2 ( z )=z / (1 -=) .  
Using Eq. (27), we find that ((0, z ) =  1/(1 - z ) ,  so that the first zero of the 
( function is at = = 1. Substituting this into Eq. (26) gives 

1 -  ~ ( - l ) k / lAp , . . .Ap~ l=O (33) 
pt  " "  pk 

This last expression can be used to check the numerical accuracy of the 
cycle expansion truncated after a fixed number of collisions. This is a very 
important check of the quality and numerical consistency of the evaluation 
of cycle expansions)~9~ 

To evaluate the cycle expansions in Eqs. (31) and (32), which are 
written as sums over all possible symbol strings, we need to be able to 
both identify all allowed symbol strings and all subdivisions of that symbol 
string where each substring is also an allowed UPO. However, in practice 
we find that it is easier to construct all symbol strings of a fixed length n 
by finding all prime UPOs of that length and all products of smaller UPOs 
whose product string is of length n. For example, when we deal with orbits 
with four or more collisions, we find that combinations of orbits of smaller 
period UPOs (e.g., the product of two length-two UPOs), are product 
strings in the cycle expansion. The motivation for ordering the cycle expan- 
sions in this way is that, for example, the product string (0 5)(0 6) is a 
reasonable approximation to the string (0 5 0 6) and each of these produces 
a term in the cycle expansion with a different sign. Thus the cycle 
expansion contains t0506 - -  to5/06,  which is approximately zero. In the Ruelle 
(-function cycle expansions these types of terms can be conveniently 
grouped together to form so-called curvature corrections. ~12~ Such curvature 
corrections can be simple terms composed of a prime string to5o6 minus a 
single shadowing approxhnant tosto6 such as in the previous example, or 
they can be more complicated. The expansion of the Ruelle (-function can 
then be written as 

1 
v = [--I (1 - tp)= 1 - ~  t f - Z c  . (34) 

p .f ,, 
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where c, are the curvature corrections and t r are fundamental cycles with 
no shorter approximants. The motivation behind this approach is the claim 
that the sum of curvature corrections quickly converges to zero, and there- 
fore this reordering of the expansion leads to a better approximation to the 
(-function. Unfortunately, the following analysis shows that this is not the 
case for the Lorentz gas. 

In Table IV we list the orbits of length 4 for w--0.3, with their 
fundamental symbol sequences and associated approximants. There are 
several points to note about the shadowing approximants. First, not all 
prime symbol strings have shadowing approximants, and second it is 
possible for there to be more than one approximant for a particular string. 
If the prime string has a single approximant, then a simple c u r v a t u r e  term 
tAB- tA tB can be formed whose value is close to zero. From Table IV this 
can be done for four of the prime symbol strings. However, the first of 
these (0 4 l0 6) has a degeneracy of six, while the product string (0 6)(0 6) 
has a degeneracy of nine. This mismatch in degeneracy destroys the can- 
cellation property. Further, there are many prime symbol strings without 
shadowing approximants, and also many more product strings whose 
prime string is pruned (that is, not allowed). All of these observations, 
together with the fact that decreasing the spacing between the scatterers 
alters the number of matching terms even more, suggest that reordering the 
periodic orbit expansion to obtain cycle expansions like Eq. (34) will not 

Table IV. Periodic Orbits of Length 4 

Degeneracy 2r Symbol Approximant 

6 4.34599781 (0 4 10 6) (0 6)(0 6) 
12 4.61036587 (0 5 0 6) (0 5)(0 6) 
6 5.57779312 (0 4 0 8) Prime 
6 5.58333111 (0 50 7) (0 5)(0 5) 

12 6.21474981 (0 5 1 6J (0 5)(0 5) and (0 6)(1 5) 
12 6.31094980 (0 4 0 7) Prime 
12 6.42766714 (0 2 4 8) Prime 
12 7.08779097 (0 3 0 8) Prime 
12 7.47488117 (0 4 0 6) Prime 
12 7.78748178 (0 3 0 7) Prime 
12 7.81867790 (05 1 51 (05)(1 5) 
6 8.19202900 (0 2 6 8) Prime 
6 8.58509731 (0 3 0 9) Prime 
6 9.~14087410 (0 2 8 6) Prime 

12 10.1162662 (0 4 0 5) Prime 
12 11.3982677 (0 2 4 6) Prime 
12 12.0706491 (0 2 6 4) Prime 
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Table V. Products of Length-2 Orbits 

S T L V 

S 3 36 9 18 
T 66 36 72 
L 3 18 
V 15 

lead to improved convergence. To make these arugments more concrete, let 
us see what happens for the case where the pruning of orbits is least: 
w=0.3. 

At length 4, the expansion of the dynamical ~-function produces a 
great number of products of length-2 UPOs. Consider the 24 length-2 
symbol strings. From these we can generate 24 x ( 2 4 -  1 )/2 = 276 possible 
product strings compared with 168 prime strings. The degeneracy of the 
product string can be found from the degeneracies of its composite strings. 
The possible products and their degeneracies are summarized in Table V. 
The degeneracies of length-2 UPOs lead to the generation of large numbers 
of product terms, many of which are not needed as terms in length-4 
curvature corrections. The number of the matching terms actually used in 
curvature corrections of the form tAB-- tA tB is listed in Table VI. The great 
excess of product strings means that the curvature corrections are not 
balanced, which has a negative effect on the convergence properties of the 
cycle expansion. Indeed, to have good convergence we would like to have 
cancellation of terms by grouping them as in tan-IAtB.  112) This feature 
appears to be lost because the number of tAtB terms greatly exceeds the 
number of tAB terms. (Indeed this pairwise matching is not even possible 
for a complete binary dynamics)~21) 

At length 5 there are 1536 possible product strings, and only 516 
prime strings. At length 6 we have triple products of length-2 UPOs (2024) 
as well as simple products of both length 2 and 4 (4464), and two length-3 

Table VI. Products of Length-2 Orbits Needed for 
Matched Curvature Corrections 

S T L V 

S 6 12 0 12 
T 18 0 12 
L 0 0 
V 0 
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UPOs (2016). Altogether, there are 1262 prime strings with a minus sign, 
6480 products with a plus sign, and 2024 products with a minus sign. 
Clearly there can be very little cancellation when this is rearranged into 
curvature correction terms, and the problem worsens at smaller values of 
w where the pruning of UPOs is even stronger. 

6. N U M E R I C A L  S C H E M E  

To evaluate the periodic orbit expansions we follow a similar numerical 
scheme to that proposed by Vance. 17~ From a chaotic trajectory of typically 
I0 ~~ collisions we scan the collision sequence at the collision time for approx- 
imate recurrences of a phase point (~bi, 0i). If II(•t+ j, O,+j)  - (4,i, 0~)11 < 10 -3, 
then we save (~b~, 0~) as the initial condition for a UPO of length j (UPO 
with j collisions). Each possible UPO initial condition is then refined using 
a Newton-Raphson iteration scheme and its largest Lyapunov number A~ 
calculated by following a tangent vector of size 0.5"10- ~ to 10-~o around 
the UPO ten times. The Lyapunov number is calculated from the final 
transit around the UPO, with earlier transits allowing the tangent vector 
time to seek out the fastest growing direction in phase space. This scheme 
allowed the Lyapunov exponent to be calculated to about six significant 
digits for UPOs of 2-12 collisions. It is clear that the instability of a UPO 
measured by the Lyapunov number affects the convergence of the Newton- 
Raphson refinement scheme. The average separation of a trajectory from 
an exact UPO is given by l ( t ) = l ( O ) A g .  If, for example, the Lyapunov 
number is A~=exp(2~r~)=exp(13.8) and the initial phase point (~bi, 0~) is 
within 10-~~ of the exact UPO, then on average, after one cycle of the 
approximate UPO the separation has grown to 10 -4. In practice this 
places a natural limit upon the maximum observable Lyapunov number, 
and our method of sampling UPOs ensures that we sample the most prob- 
able ones thoroughly, but it is possible that unpruned UPOs with relatively 
high Lyapunov numbers may be neglected. 

Gaspard and Baras 151 have shown that it is possible to calculate the 
largest Lyapunov exponent for a section of a trajectory analytically using 
the Sinai formula for the curvature of an unstable front. Indeed, for a 
periodic orbit the calculation of the largest exponent is obtained by solving 
a quadratic equation. ~7) On the other hand, Cvitanovic et al. calculate the 
Lyapunov numbers by finding the eigenvalues of the stability matrix for the 
time evolution, c~9) Our numerical results for the Lyapunov numbers are in 
excellent agreement with the analytic results obtained from both of these 
methods. We have also calculated the Lyapunov exponents analytically 
using the Sinai formula for all UPOs and our numerical results are in 
excellent agreement with the latter. Note that the numbers in our tables are 
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from our numerical scheme, which is a s tandard method also applicable 
when analytic formulas are not available. Moreover ,  even the analytic for- 
mula needs trajectory information that can only be obtained numerically. 

In the calculations of the periodic orbit  expansion, using Eq. (9), for 
example, we exploit the fact that the set of prime orbits contains di copies 
of the same contribution, where di is the degeneracy of a particular U P O ,  
by reducing the summat ion  to one over fundamental  symbol  strings. Then 
Eq. (9) becomes 

1 ~.iel,-,,di(zJ/'i) 2 A i  ~1 

D=,,lim_~2d Y~ieF diZiA7 t (35) 

where F,, is the set of fundamental  symbol strings of length n. The 
degeneracy and the set of fundamental  symbol strings are used in a similar 
way to reduce the numerical complexity of the cycle expansions in 
Eqs. (31) and (32) as well. 

7. R E S U L T S  A N D  D I S C U S S I O N  

In Fig. 6 we plot the probabil i ty of a U P O  (as measured by its fre- 
quency of occurrence in the simulation) versus the stability weight pj 
associated with it in the periodic orbit  expansion [as given by Eq. (12)] for 
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Fig. 6. The probability of finding a particular unstable periodic orbit (UPO) versus the 
stability weight associated with it in the periodic orbit expansion, for UPOs of length 4, 5, and 
6 at w = 0.3. The linear relationship illustrates that the probability and the stability weight are 
strongly correlated. 
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UPOs of length 4, 5, and 6 for a disk separation w = 0.3. For each of the 
values of n, we ran a simulation which identified several tens of thousand 
UPOs, from which the frequency of occurrence was determined. It is inter- 
esting to note that the relation between the pj and the corresponding 
frequencies appears to be the same at all lengths. Also, the spreading of 
points at low values of the frequencies is most likely to be attributed to the 
poor statistics available at that level. Indeed, some of the points correspond 
to UPOs which were observed only once in the simulation. If the stability 
weights are simply related to the statistical probability of observing the 
UPO, then we would observe a linear proportionality. This is indeed 
observed for lengths of 4, 5, and 6 for w = 0.3, and the line appears to be 
relatively independent of the length. This means that Eq. (12) is not only 
a good approximation to the relative probabilities of UPOs of a fixed 
length, but it may be used to compare the probabilities of individual UPOs 
of different lengths, even for UPOs as short as length 4. This is a vindica- 
tion of the arguments used to derive the dynamical weights used in the 
periodic orbit expansion. 

In the remainder of this section we present and compare the results 
obtained using the periodic orbit expansion [Eq. (8)] and the cycle expan- 
sion [Eqs. (31) and (32)] at a variety of different interdisk spacings. In 
both approaches the convergence can be accelerated. This point is impor- 
tant as we test the efficiency and accuracy of the methods, and the ability 
of an acceleration scheme may play a fundamental role ts'2~ in this com- 
parison. For the periodic orbit expansions, a pronounced odd-even effect 
is often observed and this can be removed using the Shanks transforma- 
tion. r If the nth term in a sequence takes the form A,,=A +ctq", with 
[q] < 1, so that A,, --, A as n ~ oo, then the sequence 

A.+IA,,_ I --A] 
C., = (36) 

A,,+I +A, ,_ ,  - 2 A .  

may be a more rapidly convergent approximation. If so, then this increase 
in convergence comes at almost no extra computational cost. However, 
there are circumstances where the Shanks transformation will not improve 
the convergence, so some caution must be exercised. To improve the con- 
vergence of the cycle expansions it is very useful to exploit the symmetry 
of the system in the calculation of the l-function. This is done by reducing 
the dynamics to the fundamental domain (FD) which is 1/12 of the EC, and 
in ref. 8 this has been carried out for w=0.3.  The difficulty with this 
approach is that so far it has not been possible to obtain an explicit for- 
mula for the diffusion coefficient using the fundamental domain [the 
analog of Eq. (32)-1 and this severely limits the approach. 

822/75/3-4-15 
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Table VII. Periodic Orbit Expansion for w---0.3 

n # cycles p~V D 2 ~, riA71 

2 24 0.4813 0.3754 1.3304 2.3971 
3 64 0.5194 0.1624 1.9408 0.4978 
4 168 0.4542 0.3800 1.5180 1.1758 
5 516 0.5108 0.1979 1.8012 0.6662 
6 1262 0.5203 0.3109 1.6445 0.8783 
7 4200 0.5344 0.2418 1.7765 0.7056 
8 14652 0.5407 0.2658 1.7166 0.8098 
9 51252 0.5404 0.2400 1,7582 0.7304 

10 165150 0.5467 0.2501 1,7421 0.7569 
Direct - -  0.5457 0.2492(3) 1,7565 - -  

In Tables VII-IX we present the results obtained for a spacing of 
w=0.3. We compare our periodic orbit expansion results with those 
obtained in Section 2. We refer to the estimates of Section 2 as the direct 
results. The numerical accuracy of the pressure calculation is quite good, 

1% ; however, the value of D is a little more difficult to obtain, as all the 
closed orbits contribute zero, and those orbits that contribute most are 
often the most unstable. The result obtained at length 10 is about 2 % low, 
whereas the results at lengths 8 and 9 bracket the correct result. The value 
of the Lyapunov exponent is within 0.5 % of the best available estimate of 
1.7565.181 

We can also reprocess the data in Table VII using the Shanks transfor- 
mation, to improve the convergence of sequences with a strongly oscillating 
behavior. The results are reported in Table VIII. The value for the pressure 
is a little lower with the same error, ~ 1%, but the diffusion coefficient is 
within 2.5 %. 

Table VIII. Shanks Transformation for w = 0 . 3  

n p~ I / D 2 T" r~A 7 t 

3 0.4953 0.2700 1.6910 0.9974 
4 0.4845 0.2809 1.6876 0.8849 
5 0.5221 0.2677 1.7003 0.8159 
6 0.4918 0.2680 1.7162 0.7831 
7 0.5458 0.2596 1.7353 0.7706 
8 0.5404 0.2534 1.7411 0.7647 
9 0.5407 0.2473 1.7466 0.7503 

Direct 0.5457 0.2492(3) 1.7565 - -  
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Table IX. Cycle Expansion for w---0,3 

577 

n # cycles p~V D 2 ~(0, O)- i 

2 24 0.4813 0.3754 1.3304 -0.3170 
3 64 0.4878 0.3388 1.4353 -0.5415 
4 168 0.5512 0.2548 1.9029 -0.0976 
5 516 0.6093 0.1772 2.2986 0.01964 
6 1262 0.5770 0.1842 1.8701 0.0300 
7 4200 0.5842 0.2255 1.7896 0.0264 
8 14652 0.5522 0.2684 1.7021 -0.0015 
9 51252 0.5442 0.2560 1.6905 -0.0055 

10 165150 0.5591 0.2384 1.7408 0.0071 
Direct - -  0.5457 0.2492(3) 1.7565 - -  

The results for the cycle expansion at w = 0.3 are similar to those for 
the periodic orbit expansion. The pressure is within 4 %  at length 10, but 
considerably better at length 9. The diffusion coefficient is bracketed by the 
results at lengths 9 and 10, but the result at length 10 is about 8% too low. 
The Lyapunov  exponent result at length 10 is excellent, whereas at lengths 
8 and 9 it is relatively poor. The last column gives ((0, 0 ) - t ,  which must 
be rigorously zero. This is probably the best consistency check on the 
numerical adequacy of the sampling of cycles. Our  results suggest that at 
lengths 8 and 9 we have a very good sampling of the allowed cycles, but 
at length 10 our sampling is not quite as good. It is most important  to 
realize that the same set of U P O s  is used in both the periodic orbit expan- 
sion and the cycle expansion; the difference is only in the expansion 
formula. 

In the two approaches that we have considered there are methods to 
improve convergence. For  the POE  we can apply the Shanks transforma- 
tion to improve convergence if the raw results are oscillatory, and for the 
cycle expansions we can reformulate them in the fundamental domain 
(exploiting cycle symmetry). In Table VII we compare these two different 
approaches, the Shanks transformation applied to POE and the cycle 
expansions in the EC, with those in the fundamental domain. This com- 
parison is made in Figs. 7 and 8 for the Lyapunov exponent at w = 0.3. 
Note that the fundamental  domain results are those taken directly from 
ref. 8. In Fig. 7 we see that both the Shanks transformation for the POE, 
and the fundamental  domain for the cycle expansion, greatly improve the 
reliability of the two methods, and the final accuracies are essentially 
equivalent. When both methods can be applied they give results of the 
same accuracy, but the Shanks transformation is considerably simpler to 
implement. 
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Fig. 7. The cycle expansion results for the average Lyapunov exponent at w = 0.3. The circles 
are for the results for the elementary cell; the crosses are the results for the fundamental 
domain taken from ref, 8. 

O u r  r e su l t s  fo r  t h e  s t a t e  p o i n t  w = 0 .236 a r e  l i s t ed  in  T a b l e s  X a n d  XI .  

A t  th i s  s m a l l e r  v a l u e  o f  t h e  s p a c i n g  t h e r e  is m o r e  p r u n i n g  o f  o r b i t s ,  

a l t h o u g h  t h e  n u m b e r s  o f  l e n g t h  2 a n d  3 h a v e  n o t  c h a n g e d .  A t  l e n g t h  4 t h e  

n u m b e r  o f  f u n d a m e n t a l  s t r i n g s  h a s  d e c r e a s e d  f r o m  17 to  12. T h i s  m e a n s  

t h a t  t h e  n u m b e r  o f  U P O s  h a s  d e c r e a s e d  f r o m  168 to  108. 

V a n c e  (7) h a s  u s e d  t h e  p e r i o d i c  o r b i t  e x p a n s i o n  to  c a l c u l a t e  t h e  di f fu-  

s i o n  coe f f i c i en t  a t  th i s  s t a t e  p o i n t .  H i s  c a l c u l a t i o n s  a r e  s o m e w h a t  d i f f e r e n t  

w=0.3 
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Fig. 8. The periodic orbit expansmn results for the average Lyapunov exponent at w = 0.3. 
The circles are the periodic orbit expansion (POE) using Eq. (9); the crosses are obtained 
from the Shanks transformation of the same results. 
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Table X. Periodic Orbit Expansion for w = 0 . 2 3 6  
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n # cycles p~V D 2 S" r j A f  I 

2 24 0.5430 0.3769 1.4053 2.3656 
3 64 0.6457 0.0901 2.0757 0.4292 
4 108 0.5411 0.3146 1.6618 1.0484 
5 252 0.6326 0.1269 1.9803 0.5260 
6 716 0.6164 0.2477 1.7699 0.8310 
7 2184 0.6332 0.1771 1.9733 0.5733 
8 5952 0.6511 0.2228 1.8926 0.7027 
9 19196 0.6482 0.1885 1.9607 0.6010 

10 51072 0.6628 0.2084 1.9329 0.6352 
Direct - -  0.665(1) 0.1970(10) - -  - -  

from those reported here, as he considers the Lorentz gas subjected to an 
applied external field and calculates the induced current. For a field 
E= O.Olp2/ma he finds a diffusion coefficient of 0.100, which is in agree- 
ment with the extrapolated results of ref. 4. Our results for POE are 
presented in Table X. The result for the pressure is excellent (within 1%), 
while the diffusion coefficient is bracketed by the results at lengths 9 and 10. 
Length 9 is 5% too low, while length 10 is 5% too high. The Shanks 
estimate is much better, being about 2 % too high. 

In the cycle expansion results for w = 0.236 we observe some seemingly 
spurious negative numbers for the average properties at lengths of 4, 5, 
and 6. This is the direct result of the very strong pruning at this state point. 
There are the same number of length-2 and-3 UPOs as we have for w = 0.3 
hence the same number of product strings of lengths 4, 5, and 6. However, 
the number of prime length-4 UPOs has fallen from 168 (at w=0.3)  to 108 

Table Xl. Cycle Expansion for w = 0 . 2 3 6  

n # cycles p~V D 2 ((0, O) -1 

2 24 0.5430 0.3769 1.4053 -0.4726 
3 64 0.5588 0.3329 1.5082 -0.7028 
4 108 0.8670 -0.0389 2.6829 -0.0918 
5 252 -0.7384 1.7970 --3.2223 0.0762 
6 716 0.7901 -0.0554 2.3036 0.0443 
7 2184 0.6425 0.1821 1.8586 0.0212 
8 5952- 0.6236 0.2672 1.8515 -0.0052 
9 19196 0.6426 0.2547 1 .8661  -0.0093 

10 51072 0.6969 0.2021 1.9664 0.0051 

Di~c t  - -  0.665(1) 0.1970(10) - -  - -  
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Fig. 9. The value of ((0, 0)-J as a function of length. This is a good estimate of the rate of 
convergence of the cycle expansions. 

(at w =0.236); the number of prime length-5 UPOs has fallen from 516 (at 
w = 0,3) to 252 (at w = 0.236); and the number of prime length-6 UPOs has 
fallen from 1262 (at w=0.3)  to 716 (at w=0.236). This leads to a change 
in the sign of the denominator of the cycle expansion I-Eqs. (31) and (32)] 
at length 4 and hence to a negative value for the diffusion coefficient. 
Similar problems occur with the numerator of the pressure and Lyapunov 
exponent at length 5, and again with the diffusion coefficient at length 6. 
Despite these difficulties with smaller length cycles, the results at length 10 
are significantly better, with the diffusion coefficient ~2.5 % too high. 

The relative convergence of the cycle expansion can be gauged by how 
close ~(0, 0 ) -  ~ is to zero. In Fig. 9 we plot ~(0, 0 ) -  J as a function of n for 
each state point. It can be seen that the convergence deteriorates with 
decreasing spacing w, which corresponds to an increase in the severity of 
cycle pruning. It would appear that as the level of pruning increases, the 

Table Xll. Pressure and Lyapunov Exponent 

w p~V <PC~V>Shanks <P~V>~yd~ < '/" > Shanks  < ~" > cycle 

0.I 1.163(I) 1.140(5) 1.20(10) 2.63(3) 2.66(9) 
0.15 0.920(I) 0.907{4) 1.02(12) 2.31(3) 2.6(3) 
0.2 0.751(1) 0.735(1) 0.73(4) 2.07(1) 1.99(8) 
0.236 0.665(1) 0.69(5) 0.69(5) 1.94(2) 1.96110) 
0.3 0.5457(3) 0.54(2) 0.59(6) 1.76(2) 1.76(8) 
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Table XlII. Diffusion Coeff icient 

W D S h a n k s  D c y c l  e D* 

0.100 0.090(4) 0.10(2) 0.0995(3) 
0.150 0.139(4) 0.10(5) 0.1350(5) 
0,200 0. I76(5) 0.20(4) 0.170(1) 
0.236 0.201(3) 0.20(5) 0.197(I) 
0.300 0.243(9) 0.23(2) 0.2492(3) 
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cycle expansion convergence becomes worse and the POE is the preferred 
method. 

In Tables XII and XIII  we present a summary of the best estimates 
obtained for the pressure, Lyapunov exponent, and diffusion coefficient for 
each of the methods and state points considered. The periodic orbit expan- 
sion estimates are based on the Shanks transformation, while those for the 
cycle expansions are taken from the elementary cell calculations. In these 
tables the numbers in parentheses are the uncertainties in the last digit of 

Fundamental 
swing 
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~ 2 4 6  
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0 2 8 6  
0 3 0 9  
0 2 . 6 8  
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0 4 0 6  
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0 5 1 6  
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0 4 0 8  
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Fig. 10. For prime UPOs of length 4, the variation in A.~ with the spacing w for each of the 
symbol strings that is not pruned at w = 0.3. As the spacing decreases, more orbits are pruned, 
but there is no clear association between this pruning and the relative stabilities of the UPOs. 
A 7 j =  exp( -  2,t,). Also, the change in stability with spacing is an individual property of the 
UPO. For some orbits such as 0507, A7 ~ decreases with the increasing spacing, whereas for 
other orbits such as 0286 the reverse is true. The average Lyapunov exponent, however, 
decreases with increasing spacing as the behavior of more probable orbits (such as 0507) 
dominates the average. 
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the quoted result. The results p~V and D* are those from Section 2. In all 
cases the uncertainty of the cycle expansion results are larger than those 
obtained from the POE using the Shanks transformation. 

The pruning of prime UPOs with decreasing values of spacing w 
makes the cycle expansions less and less reliable as a means for calculating 
averages, while the periodic orbit expansions appear to be less affected, 
particularly when combined with the Shanks transformation. We can 
investigate the pruning of prime UPOs for orbits of small length. As the 
length increases, the number of UPOs increases and discussions about 
pruning become cumbersome. At length 2 there are four fundamental 
strings at w =0.3 and two as w approaches zero. The S and L orbits of 
Table II are always found. The T orbit exists for w>0.1775, while the V 
orbit is found for w>0.21449. In Section 4 we argued that the length-3 
orbits could be considered as variations upon length-2 orbits. This would 
imply that the T'  orbit only exists while the T orbit exists, and similarly the 
V' orbit would only exist while the V orbit exists. This would appear to be 
confirmed by the results we have presented. At length 4 the number of 
fundamental strings decreases from 17 at w=0.3  to 5 at w=0.1.  In Fig. 10 
we present the value of 2T for each of the fundamental strings at each of 
the values ofw. There are a number of observations we can make. The 
pruning with decreasing w is spread throughout the range of 2T values as 
( 0 2 8  6) appears for all values of w, while (05 1 6) is pruned before 
w=0.236. Also we note that for small values of 2z, ).z decreases with 
decreasing w [for example, (0 4 0 8)] whereas for (0 2 6 8), 2~ increases 
with decreasing w. 

8. C O N C L U S I O N S  

The convergence of both the periodic orbit expansions and cycle 
expansions used here is not competitive with direct time averaging over the 
full chaotic trajectory as a means of calculating averages, even with the use 
of accelerating techniques. This is not surprising considering the fact that 
only a small fraction (about 1-2%)  of the length of the chaotic trajectory 
is composed of approximate UPOs of length 10 or less. Despite this the 
average values for the diffusion coefficient, hydrostatic pressure, and 
Lyapunov exponent are all within about 8% of the correct values. The 
importance of these expansions is not in their use as a means of calculating 
thermodynamic averages, but that they give a direct method of developing 
approximations to the full phase space distribution function. 

The calculation of the diffusion coefficient from a single very long 
trajectory, using either the mean square displacement or the Green-Kubo 
formula, was found to be very poor. The approach employed here of con- 
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sidering an ensemble of trajectories proves to be much more accurate, and 
systematic extrapolations in inverse time or in the inverse of the number of 
ensemble members provides very accurate results. The diffusion coefficient 
results obtained by in Section 2 are, we believe, the most accurate available. 

Of the two expansion methods tested here the periodic orbit expan- 
sions based upon Eq. (8), combined with the Shanks transformation, are 
the most reliable. The cycle expansions based on the dynamical Ruelle 
~-function [Eq. (30)] are less accurate in the EC, and at best comparable 
in accuracy with the Shanks transformation results if carried out in the 
fundamental domain. It is not difficult to see the reasons for this. The 
development of the cycle expansions, by dividing the expansion into 
fundamental strings and curvature corrections, is designed to work best for 
systems with little or no pruning. In that case the curvature corrections 
approach zero with increasing length, and good results can be obtained. 
The Lorentz gas exhibits very strong pruning, and the degree of pruning 
depends upon the spacing w. The have shown that, for example, at w = 0.236, 
the mismatching of curvature corrections composed of length-4 strings 
minus products of length-2 strings can lead to very large errors. Indeed the 
average can even have the wrong sign. A second aspect of the mismatching 
of curvature corrections has to do with the degeneracies of the fundamental 
strings. This is a direct consequence of the symmetry of the Lorentz gas. 
We often observe that, for example, the curvature contribution associated 
with the symbol string (0 5 0 6), /'o5o6-/'o5to6, has different degeneracies 
associated with each of the two terms. The degeneracy of/'0506 is 12, whereas 
the degeneracy of to5 [06 is 12 x 3 = 36. This difference in degeneracy destroys 
any possibility of cancellation of curvature corrections. 

The convergence of the periodic orbit expansions may often be 
improved by the Shanks transformation, but this is not always the case. 
The conditions under which the Shanks transformation is most usefully 
exploited is when the sequence shows strong oscillations with increasing 
length (in particular, when there is systematic deviation depending upon 
whether the length is even or odd). In the case where no even-odd effect 
is observed, one can rely on other conventional methods for the improve- 
ment of convergence (see ref. 22, for instance). The advantage of this 
approach is that the improvement in convergence is obtained at no extra 
computational cost, whereas the reduction to the fundamental domain is 
both formidable and not appropriate for some system properties (such 
as diffusion). Although the periodic orbit expansion can be formulated 
without the use o'f symbolic dynamics, we have found that symbolic 
dynamics techniques helps to enumerate all the possible UPOs, and, more 
importantly, for the Lorentz gas it explicitly builds in the symmetry, by the 
identification of the fundamental string and its degeneracy. 



584 Morriss and Rondoni 

A C K N O W L E D G M E N T S  

We wish to thank  P. C v i t a n o v i c  and  T. Schre iber  for a helpful  cor re -  

spondence  with  regard  to the use of  cycle expans ions  and symbol i c  dynamics .  
T h a n k s  are  in o rde r  to Edd ie  C o h e n  for sugges t ing  the p r o b l e m  and  for very 

s t imula t ing  and  useful co r respondence .  This  w o r k  has  been s u p p o r t e d  by the 

Aus t ra l i an  Research  Counc i l  (A69131116)  and  G N F M - C N R  (Italy).  G . P . M .  
thanks  the Research  School  of  Chemis t ry ,  Aus t ra l i an  N a t i o n a l  Univers i ty ,  

for p rov id ing  the e n v i r o n m e n t  tha t  in i t ia ted this work.  

R E F E R E N C E S  

1. D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. Rev. A 42:5990 11990). 
2. P. Gaspard and S. A. Rice, J. Chem. Phys. 90:2225, 2242, 2255 (1989). 
3. J. Machta and R. Zwanzig, Phys. Rev. Lett. 50:1959 (1983). 
4. A. J. C. Ladd and W. G. Hoover, d. Stat. Phys. 38:973 (1985); B. Moran and W. G. 

Hoover, J. Star. Phys. 48:709 (1987). 
5. P. Gaspard and F. Baras, in Microscopic Simulations of Complex Hydrodynamic 

Phenomena, M. Mareschal and B. L. Holian, eds. (Plenum Press, New York, 1992). 
6. N. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Ya. G. Sinai, Phys. Rev. Lett. 70:2209 

(1993). 
7. W. N. Vance, Phys. Rev. Lett. 69:1356 (1992). 
8. P. Cvitanovic, P. Gaspard and T. Schreiber, Chaos 2:85 (1992). 
9. D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Academic 

Press, London, 1990). 
10. A. Baranyai, D. J. Evans, and E. G. D. Cohen, J. Star. Phys. 70:1085 (1993). 
11. P. Cvitanovic, Phys. Reu. Left. 61:2729 (1988). 
12. R. Artuso, E. Aurell, and P. Cvitanovic, Nonlinearity 3:325, 361 (1990). 
13. W. Parry, Commun. Math. Phys. 106:267 (1986). 
14. C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. A 37(5):1711 (1988). 
15. D. Auerbach et aL, Phys. Rev. Lett. 58:2387 (1987). 
16. J. H. Hannay and A. M. Ozorio de Almeida, J. Phys. A 17:3429 (1984). 
17. P. Gaspard and D. Alonso Ramirez, Phys. Ret,. A 45:8383 (1992). 
18. D. Ruelle, Thermodynamic Formalism (Addison-Wesley, Reading, Massachusetts, 1978). 
19. P. Cvitanovic, Private communication. 
20. P. Cvitanovic and B. Eckhardt, Nonlinearity, in press. 
21. C. M. Bender and S. A. Orszag, Advanced Mathematical Methods .[or Scientists and 

Engineers (McGraw-Hill, New York, 1978). 
22. W. H. Press et al., Numerical Recipes in C (Cambridge University Press, Cambridge, 

1988); G. Arfken, Mathematical Methods for Physicists (Academic Press, London, 1985). 


